Dikarenakan kebanyakan informasi (perkiraan umum mengatakan lebih dari 80%) saat ini disimpan sebagai teks, text mining diyakini memiliki potensi nilai komersial tinggi (Bridge, 2011). Saat ini, text mining telah mendapat perhatian dalam berbagai bidang:
Pertama, Aplikasi keamanan. Banyak paket perangkat lunak text mining dipasarkan terhadap aplikasi keamanan, khususnya analisis plain text seperti berita internet. Hal ini juga mencakup studi enkripsi teks. Kedua, Aplikasi biomedis. Berbagai aplikasi text mining dalam literatur biomedis telah disusun. Salah satu contohnya adalah PubGene yang mengkombinasikan text mining biomedis dengan visualisasi jaringan sebagai sebuah layanan Internet. Contoh lain text mining adalah GoPubMed.org. Kesamaan semantik juga telah digunakan oleh sistem text mining, yaitu, GOAnnotator.
Ketiga, Perangkat Lunak dan Aplikasi. Departemen riset dan pengembangan perusahaan besar, termasuk IBM dan Microsoft, sedang meneliti teknik text mining dan mengembangkan program untuk lebih mengotomatisasi proses pertambangan dan analisis. Perangkat lunak text mining juga sedang diteliti oleh perusahaan yang berbeda yang bekerja di bidang pencarian dan pengindeksan secara umum sebagai cara untuk meningkatkan performansinya.
Keempat, Aplikasi Media Online. Text mining sedang digunakan oleh perusahaan media besar, seperti perusahaan Tribune, untuk menghilangkan ambigu informasi dan untuk memberikan pembaca dengan pengalaman pencarian yang lebih baik, yang meningkatkan loyalitas pada site dan pendapatan. Selain itu, editor diuntungkan dengan mampu berbagi, mengasosiasi dan properti paket berita, secara signifikan meningkatkan peluang untuk menguangkan konten.
Kelima, Aplikasi Pemasaran. Text mining juga mulai digunakan dalam pemasaran, lebih spesifik dalam analisis manajemen hubungan pelanggan. Coussement dan Van den Poel (2008) menerapkannya untuk meningkatkan model analisis prediksi untuk churn pelanggan (pengurangan pelanggan). Keenam, Sentiment Analysis. Sentiment Analysis mungkin melibatkan analisis dari review film untuk memperkirakan berapa baik review untuk sebuah film. Analisis semacam ini mungkin memerlukan kumpulan data berlabel atau label dari efektifitas kata-kata. Sebuah sumber daya untuk efektivitas kata-kata telah dibuat untuk WordNet.
Terakhir adalah Aplikasi Akademik. Masalah text mining penting bagi penerbit yang memiliki database besar untuk mendapatkan informasi yang memerlukan pengindeksan untuk pencarian. Hal ini terutama berlaku dalam ilmu sains, di mana informasi yang sangat spesifik sering terkandung dalam teks tertulis. Oleh karena itu, inisiatif telah diambil seperti Nature’s proposal untuk Open Text Mining Interface (OTMI) dan Health’s common Journal Publishing untuk Document Type Definition (DTD) yang akan memberikan isyarat semantik pada mesin untuk menjawab pertanyaan spesifik yang terkandung dalam teks tanpa menghilangkan barrier penerbit untuk akses publik. Sebelumnya, website paling sering menggunakan pencarian berbasis teks, yang hanya menemukan dokumen yang berisi kata-kata atau frase spesifik yang ditentukan oleh pengguna. Sekarang, melalui penggunaan web semantik, text mining dapat menemukan konten berdasarkan makna dan konteks (daripada hanya dengan kata tertentu). Text mining juga digunakan dalam beberapa filter email spam sebagai cara untuk menentukan karakteristik pesan yang mungkin berupa iklan atau materi yang tidak diinginkan lainnya.